Direct Detection

A short review and the XENON1T excess

Marc Schumann U Freiburg

Kashiwa Dark Matter Symposium Online, November 17, 2020

erc

marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

"We" are here ... moving through the Dark Matter Halo

assumed to be made of WIMPs

Direct WIMP Search

Direct WIMP Search

Direct WIMP Search

Experimental Strategy

- search for low-E nuclear recoil signals
- aim for "zero" background in search region
 → note: now we use flexible PL analyses without hard borders
- lowest possible threshold
- largest possible exposure

Current Status

UNI FREIBURG

Annual Modulation

BURG

UNI FREI

DAMA/LIBRA

DAMA: Tests and Challenges

Nal(TI) Experiments

COSINE100 Nature 564, 83 (2018), PRL 123, 031302 (2019)

- excludes DAMA interpreted as SI interaction with standard halo model
- modulation analysis still inconclusive
- ANAIS PRL 123, 031301 (2019), J. Phys.: Conf. 1468, 012014 (2020)
- same threshold but ~3x higher background
- data consistent with no modulation; incompatible with DAMA at 2.6 σ

SABRE, PICOLON, COSINUS under preparation

Others

- SI-induced nuclear recoils ruled out by many experiments with much lower backgrounds (and NR identification)
- Modulation from DM-e scattering challenged by LXe TPCs XENON100, LUX

PRL 118, 101101 (2017) PRD 98, 062005 (2018)

Direct Detection Technologies

J. Phys. G 46, 103003 (2019)

muons

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

to distinguish ERs (background) from NRs (signal).

Exploit different energy-loss mechanisms (quenching effects)

Active ER Background Rejection

Migdal Effect (Bremsstrahlung)

Dual-Phase TPC

Dual-Phase TPC – Charge Only

Status Spin-Dependent Couplings

UNI FREIBURG

- coupling of WIMP to unpaired nucleon spins
- traditionally separated in proton-only and neutron-only
- same parameter space explored by indirect and collider searches

Isotope Abundance Spin Unpaired Nucleon Relative Strengt ^{7}Li 92.6% 3/2 proton 12 ^{19}F 100.0% 1/2 proton 100 ^{23}Na 100.0% 3/2 proton 1 ^{29}Si 4.7% 1/2 neutron 9			-		-
7 Li 92.6% $3/2$ proton 12 19 F 100.0% $1/2$ proton 100.0% 23 Na 100.0% $3/2$ proton 1 29 Si 4.7% $1/2$ neutron 9	Isotope	Abundance	Spin	Unpaired Nucleon	Relative Strength
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	⁷ Li	92.6%	3/2	proton	12.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{19}F	100.0%	1/2	proton	100.0
29 Si 4.7% $1/2$ neutron 9.	23 Na	100.0%	3/2	proton	1.3
70	^{29}Si	4.7%	1/2	neutron	9.7
7^{3} Ge $7.7\% 9/2$ neutron 0.5	73 Ge	7.7%	9/2	neutron	0.3
127I 100.0% 5/2 proton 0.	^{127}I	100.0%	5/2	proton	0.3
131 Xe 21.3% 3/2 neutron 1	131 Xe	21.3%	3/2	neutron	1.7

Upcoming Projects

Exciting Times for Direct Detection

- very diverse experimental landscape many different projects
- 3 multi ton-scale LXe experiments will get online soon
- very good prospects to reach neutrino floor in next decade

UNI REI

largest LXe TPC ever operated cylinder: 96 cm active LXe target: 2.0t (3.2t total) 248 PMTs

The second secon

and the second second

Low-energy electronic recoils in XENON17 PRD 102, 072004 (2020)

Low-energy electronic recoils INXENON17 PRD 102, 072004 (2020)

TAL ADDA TO AND ADDADA ADDADA

and a start of the start of the

THE REAL PROPERTY OF MORE

A DE LES AND

New Physics in ER Data

Many models predict signatures from new physics in low-E ER data. Our selection:

- BSM physics could enhance μ_{ν} ;
- i/a cross-section increases with μ_v^2/E_v

XENON Dark Matter Project

Detection

 detector effects need to be considered: *E*-resolution, detection efficiency

neutrinos: elastic ve-scattering

10 components

10 components

10 components

Background Fit

M. Schumann (Freiburg) – Direct Detection

XENON Dark Matter Project

Excess of Events

- excess in 1-7 keV range 285 evts observed vs 232 ± 15 expected
 - \rightarrow (naive) 3.3 fluctuation
- events uniformly distributed
 in space
- in time (but low stats)
- far away from typical WIMP artefact backgrounds
 - accidental coincidences
- surface background
- efficiency and reconstruction validated down to threshold via calibration

Excess of Events

- excess in 1-7 keV range 285 evts observed vs 232 ± 15 expected
 - \rightarrow (naive) 3.3 fluctuation
- events uniformly distributed
 in space
- in time (but low stats)
- far away from typical WIMP artefact backgrounds
 - accidental coincidences
- surface background
- efficiency and reconstruction validated down to threshold via calibration

What causes it????

BSM Signal Models?

XENON

BUT

Tritium: A new background? Ν Dark Matter Project

- cosmogenic production by Xe-spallation or present in H₂O (outgassing from walls)
 - → ONLY above-ground activation relevant!
- half-life = 12.3 y \rightarrow ~constant in our dataset from fit: <3 ³H atoms per kg of Xe
- we can neither confirm nor exclude the Tritium hypothesis at this point

0

Excess Summary

PRD 102, 072004 (2020)

ΧΕΝΟΝ

Dark Matter Project

M. Schumann (Freiburg) – Direct Detection

XENONNT: Axions vs. Tritium

- assume excess persists and is from solar axions
- How much data is needed to distinguish it from ³H?
- exploit differences in spectral shape
- sensitivity depends on background level

assume 4t FV and no calibration

Exciting Times for Direct Detection

- very diverse experimental landscape many different projects
- 3 multi ton-scale LXe experiments will get online soon
- very good prospects to reach neutrino floor in next decade

UNI REI