Dark Matter (and more) with XENON detectors

THE REAL PROPERTY

Marc Schumann University of Freiburg GRK 2149 Colloquium, 15.01.2021 www.app.uni-freiburg.de Bundesministerium für Bildung und Forschung

erc

Dark Matter: (indirect) Evidence

The indirect evidence for the existence of dark matter is a clear indication for physics beyond the Standard Model

THE DM CANDIDATES ZOO

WIMPs = weakly interacting massive particles

Axions

D-matter StatesSplit Sterile Sneutrino interacting Braneworls perweakly Chaplycin Axin Fuzzy Gravitino Wimpzillas ess Mirror Bran Photino Black Cryptonss yptonsSelf-interacting MevMessenger GMSB

stolen from G. Bertone

Dark Matter WIMP Search

Direct Detection

Indirect Detection Production @Collider

f

Direct WIMP Search

The WIMP Parameter Space

Background Sources (for ton-scale detectors)

Background Suppression

A Avoid Backgrounds Use of radiopure materials

Shielding

deep underground location large shield (Pb, water, poly) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

B Use knowledge about expected WIMP signal

WIMPs interact only once

 → single scatter selection
 require some position resolution

 WIMPs interact with target nuclei

 → nuclear recoils
 exploit different dE/dx from

signal and background

The XENON Collaboration

Dark Matter Project

XENON Instruments

The XENON collaboration develops and operates dark matter detectors of increasing size and sensitivity

M. Schumann (Freiburg) – Dark Matter (and more) ...

Matter Project

Dual Phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

TPC = time projection chamber

Dual Phase TPC

Background Rejection

- 3dim vertex reconstruction
 → fiducialization
- multi-scatter rejection
- energy measurement (S1+S2)

Figures: XENON100

LXe TPC Features

- 3dim vertex reconstruction
 → fiducialization
- multi-scatter rejection
- energy measurement (S1+S2)
- Charge-Light-Ratio (S2/S1):
 Particle ID
- → ER background rejection (WIMP search)
- \rightarrow selection of ER channels
- very low background
- low threshold (light: ~2-3 PE, charge: few electrons)
- large target mass \rightarrow high exposure

Figures: XENON100

EPJ C 77, 991 (2017)

cylinder: 96 cm active LXe target: 2.0t (3.2t total) 248 PMTs

WIMP Dark Matter

Selected Results from

XENONL

General Search Strategy

- 1. reduce background
 - → pick optimal region of interest (ROI)
- 2. know your expected signal
- 3. know your **backgrounds** → requires lots of detector calibration
- 4. perform a **"blind" search** to avoid bias
 - → ROI not accessible

5. Unblind

→ check if there is an excess of signals above the background expectation in the ROI

Looks like Dark Matter?

Dark Matter Project

22

20

18

16

12

... but it's a low-E neutron interaction from calibration!

M. Schumann (Freiburg) – Dark Matter (and more) ...

Calibration and Analysis

M. Schumann (Freiburg) – Dark Matter (and more) ...

ark Matter Project

Blind WIMP Search

Blind WIMP Search

M. Schumann (Freiburg) - Dark Matter (and more) ...

Dark Matter Proiect

 → no statistically significant excess observed

Unblinding

200 GeV/c²

spin-independent WIMP-nucleon interactions 10^{-32} LUX (M) 10^{-34} ENONIT (M) 10^{-36} EDELWEISS (Surf) Cross Section [cm²] 10⁻³⁸ NEWS-G **CRESST-II** DAMA/I DAMIC 10^{-40} DAMA/Na COSINE-100 **CDMSlite** DarkSide-50 (S2) 10⁻⁴² SuperCDMS DarkSide-50 DEAP-3600 **ÈDELWEISS** XENON1T (S2 LUX 10^{-44} XENON100 XENONIT PandaX-II/ 10⁻⁴⁶ 10^{-48} 10-50 臣 0.30.5 3 10 30 50 100 300 10^{4} 0.1 1 5 1000 3000 WIMP mass $[GeV/c^2]$

some results are missing...

Spin-Dependent Couplings PRL 122, 141301 (2019)

- coupling of WIMP to unpaired nucleon spins
- traditionally separated in proton-only and neutron-only
- same parameter space explored by indirect and collider searches

Isotope	Abundance	Spin	Unpaired Nucleon	Relative Strength
$^{7}\mathrm{Li}$	92.6%	3/2	proton	12.8
^{19}F	100.0%	1/2	proton	100.0
23 Na	100.0%	3/2	proton	1.3
29 Si	4.7%	1/2	neutron	9.7
$^{73}\mathrm{Ge}$	7.7%	9/2	neutron	0.3
^{127}I	100.0%	5/2	proton	0.3
$^{131}\mathrm{Xe}$	21.3%	3/2	neutron	1.7

Standard Analysis

M. Schumann (Freiburg) – Dark Matter (and more) ...

Charge-Only Analysis PRL 123, 251801 (2019)

spin-independent WIMP-nucleon interactions

some results are missing...

Migdal Effect, Bremsstrahlung PRL 123, 241803 (2019)

Migdal Analysis

spin-independent WIMP-nucleon interactions

some results are missing...

spin-independent WIMP-nucleon interactions

some results are missing...

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE.

Double-Electron Capture of 124Xe

- weak 2nd order decay with very long half life T_{1/2}
- already observed for ⁷⁸Kr, ¹³⁰Ba

•
$${}^{124}Xe + 2 e^{-} \rightarrow {}^{124}Te^{**} + 2 \nu_{e}$$

monoenergetic line at 64.33 keV

^{nat}Xe contains ~1 kg ¹²⁴Xe per ton
Double-Electron Capture of 124Xe

Nature 568, 532 (2019)

- 126 events above background in 1.5 t Xenon
- $T^{2\nu ECEC}_{1/2}$ = (1.8±0.5_{stat}±0.1_{sys})×10²²y
- Longest half-life ever directly measured!

M. Schumann (Freiburg) - Die Suche nach Dunkler Materie

XENON

Dark Matter Project

WWU

Electronic Recoil Search

8000 4000 Charge ₁₀ Signal Bottom Array [PE] lowest background-like background calibration achieved in a Rn220 Calibration 200 **DM** experiment **Electronic Recoil** so far! (gamma, beta, ??) S2 **keV**NR 4000 Corrected 2000 blinded region dark matter data 400 **Nuclear Recoil** 200 (neutron, WIMP) 60 80 90 100 03 Corrected S1 [PE] Light Signal

New Physics in ER Data

Many models predicts signatures from new physics in low-E ER data. Our selection:

Solar Axions

XENON Dark Matter Project

- axions: solve strong CP problem and CDM candidate
- if axions exists, production in Sun with $E_{kin} \sim keV$ via
 - ABC: atomic recombination/deexcitation, Bremsstr., Compton i/a
 - **Primakoff** $y \rightarrow a$ conversion
 - ⁵⁷Fe: 14.4 keV M1 nuclear transition
- normalization of spectra depends on axion coupling constants

New Physics in ER Data

Many models predicts signatures from new physics in low-E ER data. Our selection:

Solar Axions

XEN

Dark Matter Project

- axions: solve strong CP problem and CDM candidate
- if axions exists, production in Sun with $E_{kin} \sim keV$ via
 - ABC: atomic recombination/deexcitation, Bremsstr., Compton i/a
 - **Primakoff** $\gamma \rightarrow a$ conversion
 - 57Fe: 14.4 keV M1 nuclear transition
- normalization of spectra depends on axion coupling constants

Axion-like Particle (Bosonic ALPs)

- assume all DM is made of non-relativistic ALPs
- expect mono-energetic peak at unknown m_a

Enhanced Neutrino Magnetic Moment

- expect $\mu_{_{\rm V}} \sim 10^{_{-20}} \, \mu_{_{\rm B}}$ for massive neutrinos
- BSM physics could enhance μ_{ν} ; if $\mu_{\nu} > 10^{-15} \mu_{R} \rightarrow$ neutrino is Majorana
- current limit $\mu_v < 3 \times 10^{-11} \mu_B$ Borexino PRD 96, 091103 (2017)
- i/a cross-section increases with μ_v^2/E_v
- M. Schumann (Freiburg) Dark Matter (and more) ...

Detection

detector effects need to be considered:

E-resolution, detection efficiency

neutrinos: elastic ve-scattering

Production \otimes Detection \otimes Reconstruction

M. Schumann (Freiburg) – Dark Matter (and more) ...

Background Model

10 components

LXe intrinsic: ²¹⁴Pb (from 222Rn) ⁸⁵Kr ^{83m}Kr (from calibration) ¹³⁶Xe (2vββ) ¹²⁴Xe (2vDEC) → today's signal is tomorrow's background From neutron-activation:

^{131m}Xe (IC) ¹³³Xe (β+81 keV γ) ¹²⁵I (EC) → divide data in two periods:

 \rightarrow divide data in two periods: close/far from n-calibration

Detector materials

Solar neutrinos

Background Fit

- unbinned profile likelihood fit to data
- combined fit of data close/far to neutron calibration

M. Schumann (Freiburg) – Dark Matter (and more) ...

Excess of Events

- excess in 1-7 keV range 285 evts observed vs 232 ± 15 expected
 - \rightarrow (naive) 3.3 fluctuation
- events uniformly distributed
 in space
- in time (but low stats)
- far away from typical WIMP artefact backgrounds
 - accidental coincidences
- surface background
- energy threshold well understood

Excess of Events

- excess in 1-7 keV range 285 evts observed vs 232 ± 15 expected
 - \rightarrow (naive) 3.3 fluctuation
- events uniformly distributed
 in space
- in time (but low stats)
- far away from typical WIMP artefact backgrounds
 - accidental coincidences
- surface background
- energy threshold well understood

What causes it????

M. Schumann (Freiburg) – Dark Matter (and more) ...

BSM Signal Models?

M. Schumann (Freiburg) - Dark Matter (and more) ...

XENON

BUT

Tritium: A new background? Ν Dark Matter Project

- cosmogenic production by Xe-spallation or present in H₂O (outgassing from walls)
 - → ONLY above-ground activation relevant!
- half-life = 12.3 y \rightarrow ~constant in our dataset from fit: <3 ³H atoms per kg of Xe
- we can neither confirm nor exclude the Tritium hypothesis at this point
- M. Schumann (Freiburg) Dark Matter (and more) ...

0

Excess Summary

PRD 102, 072004 (2020)

M. Schumann (Freiburg) - Dark Matter (and more) ...

ΧΕΝΟΝ

Dark Matter Project

XENONNT: The new instrument

- target mass ×3
 - → new, larger TPC
- lower background
 - → lightweight TPC design

– target mass ×3

 \rightarrow new, larger TPC

lower background

→ lightweight TPC design

Rn reduced by factor 6 → online Rn-removal Active on-line Rn removal via cryogenic distillation

Demonstrated factor >27 on XENON100

package

Reboiler

Pumps

XENONnT column

- design flow
 200 slpm
- reduction of Rn from TPC/cryostat by factor (>)2
- reduction of Rn from cryosystem/ cables by factor (>)2

WU

- target mass ×3

 \rightarrow new, larger TPC

lower background

→ lightweight TPC design

Rn reduced by factor 6 → online Rn-removal

neutrons below neutrinos

→ neutron veto

Gd-loaded Water Cherenkov Detector

- neutron moderation in water, capture on Gd
- 0.2% Gd-loaded water (technology from EGADS-SK)
- 120 PMTs around cryostat for light detection
- goal: 85% neutron tagging efficiency (x10 PMT coincidence)
- background goal: 0.3 neutrons in ROI, 20 t×y exposure

– target mass ×3

 \rightarrow new, larger TPC

lower background

→ lightweight TPC design

Rn reduced by factor 6 → online Rn-removal

neutrons below neutrinos

→ neutron veto

– higher Xe purity

(=smaller corrections)

 \rightarrow liquid Xe purification

Continuous Purification of <u>liquid</u> Xenon

- remove electronegative impurities ($\rightarrow O_2$) by absorption in cryogenic filters
- flux goal: ~2 LPM (≙1000 slpm)
- aim for electron lifetime \gg 1 ms in very short time
- challenge: low Rn budget (filter dependent)

- target mass ×3

 \rightarrow new, larger TPC

lower background

→ lightweight TPC design

Rn reduced by factor 6 → online Rn-removal

neutrons below neutrinos

→ neutron veto

higher Xe purity

(=smaller corrections)

 \rightarrow liquid Xe purification

additional upgrades

- * storage (Restox-II),
- * gas purification (Rn-free pumps),
- * DAQ (new design, new processing, low gain channels for $0\nu\beta\beta$),

* computing etc.

.

assume 4t FV and no calibration

 exploit differences in spectral shape

assume excess persists

X E N O N Dark Matter Project

> sensitivity depends on background level

XENOND X ENON Dark Matter Project XENONDAT WIMP Sensitivity JCAP 11, 031 (2020)

some results are missing ...

The ultimate Limit

BURG

The ultimate Limit

DARWIN DARWIN: The ultimate WIMP Detector

Target Mass [t]

DARWIN Backgrounds

pp+⁷Be neutrinos → ER signature high-E neutrinos → CNNS bg → NR signature

Remaining background sources: – Neutrinos (\rightarrow ERs and NRs) – Detector materials (\rightarrow n) – Xe-intrinsic isotopes (\rightarrow e⁻) (assume negligible µ-induced background)

JCAP 10, 016 (2015)

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Water Shield @ LNGS

Full MC Simulation for 3600 mwe

- external γ, n background irrelevant after >2.5m
- critical: μ -induced neutrons of high energy
- studied several water shield geometries between XENON and Borexino tank
- 12m tank: ~0.4 n/(200 t×y) Borexino: <0.05 n/(200 t×y)</p>
- Gd-loaded water further reduces numbers

LXe: Radon Background

Strategy DARWIN

- avoid Rn emanation by
- → optimal material production
- → material selection
- → surface treatment
- → optimized detector design
- active Rn removal via cryogenic distillation
 → column developed for XENONnT is R&D for DARWIN

DARWIN The ultimate WIMP Detector

M. Schumann (Freiburg) – Dark Matter (and more) ...

Challenges

• Size

- → electron drift (HV)
- → diameter (TPC electrodes)
- → mass (LXe purification)
- → dimensions (radioactivity)
- → detector response (calibration, corrections)

• Backgrounds

- \rightarrow ²²²Rn: factor 100 required
- \rightarrow (α ,n) neutrons (from PTFE)

Photosensors

- → high light yield (QE)
- → low radioactivity
- → long-term stability
- etc etc
- R&D within XENON collaboration
- two ERC projects

ULTIMATE (Freiburg) Xenoscope (Zürich)

DARWIN LXe Testplatform in Freiburg:

DFG

schungsgemeinschaft

eutsche

- 2.7 m inner diameter
- up to ~15 cm height (~5 cm LXe)
- \rightarrow ~400 kg Xe gas
- → test horizontal components, real-scale electrodes etc.

DARWIN The ultimate WIMP Detector

other than WIMPs, axions, ALPs, anomalous v-interactions, double-electron capture

What (else) can we do with this instrument?

Interactions in LXe Detectors

Interactions in LXe Detectors

→ Many **science channels** are accessible

DARWIN = A low background, low threshold **astroparticle physics observatory**

M. Schumann (Freiburg) – Dark Matter (and more) ...

Solar Neutrinos

- DARWIN's ER spectrum will be dominated by pp neutrinos (and $2\nu DEC+2\nu\beta\beta$)
- \bullet distinct features in ν spectra allow extracting neutrino fluxes
 - → full spectral fit of all components up to 3 MeV (possibility to enhance sensitivity by more sophisticated analysis)
Solar Neutrinos

DARWIN

UNI FREIBURG

Energy [keV]

M. Schumann (Freiburg) – Dark Matter (and more) ...

Ó

- $0\nu\beta\beta$ candidate with $Q_{\beta\beta}=2.46$ MeV
- 40t DARWIN LXe target contains 3.5t of ¹³⁶Xe without any enrichment!

M. Schumann (Freiburg) - Dark Matter (and more) ...

DARWIN Sensitivity

- optimize sensitivity by fiducialization
- important background from decays of neutron-activated ¹³⁷Xe
 - \rightarrow assume LNGS depth
- half-life sensitivity: 2.4 × 10²⁷ y

XENON & DARWIN: Exciting Times

