Highlights from direct dark matter detection

erc

Marc Schumann U Freiburg

ICRC 2021 Online, July 14, 2021

marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

"We" are here ... moving through the Dark Matter Halo

"We" are here ... moving through the Dark Matter Halo

made of ???

Disclaimer: very little time for a very rich field. \rightarrow focus on general status of field and recent results

ts NEW

 \rightarrow biased selection of topics!

"We" are here ... moving through the Dark Matter Halo

made of ???

Direct WIMP Search

Direct WIMP Search

Current Status

UNI FREIBURG

Annual Modulation

BURG

UNI FREI

days after August 3, 2017 (days)

Migdal Effect

Dual-Phase TPC

Dual-Phase TPC – Charge Only

Status Spin-Dependent Couplings

UNI FREIBURG

- coupling of WIMP to unpaired nucleon spins
- traditionally separated in proton-only and neutron-only
- same parameter space explored by indirect and collider searches

Isotope Abundance Spin Unpaired Nucleon Relative Strengt ^{7}Li 92.6% 3/2 proton 12 ^{19}F 100.0% 1/2 proton 100 ^{23}Na 100.0% 3/2 proton 1 ^{29}Si 4.7% 1/2 neutron 9			-		-
7 Li 92.6% $3/2$ proton 12 19 F 100.0% $1/2$ proton 100.0% 23 Na 100.0% $3/2$ proton 1 29 Si 4.7% $1/2$ neutron 9	Isotope	Abundance	Spin	Unpaired Nucleon	Relative Strength
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	⁷ Li	92.6%	3/2	proton	12.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^{19}F	100.0%	1/2	proton	100.0
29 Si 4.7% $1/2$ neutron 9.	23 Na	100.0%	3/2	proton	1.3
70	^{29}Si	4.7%	1/2	neutron	9.7
7^{3} Ge $7.7\% 9/2$ neutron 0.5	73 Ge	7.7%	9/2	neutron	0.3
127I 100.0% 5/2 proton 0.	^{127}I	100.0%	5/2	proton	0.3
131 Xe 21.3% 3/2 neutron 1	131 Xe	21.3%	3/2	neutron	1.7

Status: WIMP-e⁻ Scattering

UNI REI

Upcoming Projects

Direct Axion Detection

UNI

• Presence of axions modify Maxwell's eq.

$$\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B}$$

$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = j + g_{a\gamma\gamma} (\dot{a}\mathbf{B} + \nabla a \times \mathbf{E})$$
axion-induced charge and current densities
$$\nabla \times \mathbf{B} - \dot{\mathbf{E}} = j + g_{a\gamma\gamma} (\dot{a}\mathbf{B} + \nabla a \times \mathbf{E})$$
axion-induced charge and current densities
$$\nabla \mathbf{B} - \dot{\mathbf{E}} = j + g_{a\gamma\gamma} (\dot{a}\mathbf{B} + \nabla a \times \mathbf{E})$$

• Axion-Photon Conversion

- EM interaction mediates axion-photon coupling
- \rightarrow too many experimental approaches and projects to cover properly

Status and Search Strategies

UNI FREIBURG

Status and Search Strategies

URG

Status and Search Strategies

URG

Haloscopes: Figure of Merit

- axion mass unknown \rightarrow scan all masses (~frequencies v_a)
- FoM: search rate ("time needed to explore a mass range at a given sensitivity")

→ many "knobs" to optimize for a given frequency range and sensitivity

- Nb: resonance frequency of cavity is inversely proportional to size
 → scanning higher frequency requires smaller cavities
 - quantum noise in RF amplifiers increases with frequency

New Haloscope Results

M. Schumann (Freiburg) – Highlights Direct Detection

BURG

FREI

Background Fit

M. Schumann (Freiburg) – Highlights Direct Detection

Excess of Events

- excess in 1-7 keV range 285 evts observed vs 232 ± 15 expected
 - \rightarrow (naive) 3.3 σ fluctuation

PRD 102, 072004 (2020)

- events uniformly distributed
 in space
 - in time (but low stats)
- far away from typical WIMP artefact backgrounds
 - accidental coincidences
 - surface background
- efficiency and reconstruction validated down to threshold via calibration

Possible Explanations

Possible Explanations

XENON made result public.

140-

Exciting Future for Direct Detection

- very diverse experimental landscape many different projects
- both, WIMP and axion communities aim at closing most interesting paramer space in the next decade(s)