Direct Dark Matter Searches

Marc Schumann Universität Freiburg GRK 2044 Seminar, Universität Freiburg, December 7, 2016 marc.schumann@physik.uni-freiburg.de

Dark Matter: (indirect) Evidence

The indirect evidence for the existence of dark matter is a clear indication for physics beyond the Standard Model

THE DM CANDIDATES ZOO

WIMPs

= weakly interacting massive particles

stolen from G. Bertone

Dark Matter WIMP Search

Direct Detection

Indirect Detection Production @Collider

f

Dark Matter WIMP Search

Direct WIMP Search

Direct WIMP Search

Direct Detection:

Er < 100 keV *R* < 1 evt/kg/year

How to build a WIMP detector?

- large total mass, high A ✓
- low energy threshold

 for liquid
- ultra low background
 xenon TPCs
- good signal / background discrimination

We are dealing with

- extremely low rates (O(1) Hz)
- extremely low thresholds (~2 keV)
- extremely low radioactive backgrounds

Cosmic rays (p, n, µ) enter any shielding or induce secondary particles

σĨ

LNGS: 1.4km rock (3700 mwe)

Background Sources

The U and Th Chains

Low-background Screening arXiv:1606.03983

Experiment low-activity Pb **HPGe** detector

Germanium

Germanium Material and Meteorite Screening

Low-background Screening

M. Schumann (Freiburg) – Direct Dark Matter Detection

GeMSE

Germanium

Material and

Background Suppression

A Avoid Backgrounds Use of radiopure materials

Shielding

deep underground location large shield (Pb, water, poly) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

B Use knowledge about expected WIMP signal

 WIMPs interact only once

 → single scatter selection require some position resolution

 WIMPs interact with target nuclei

 → nuclear recoils
 exploit different dE/dx from signal and background

The XENON Collaboration

XENON Instruments

The XENON collaboration develops and operates dark matter detectors of increasing size and sensitivity

Matter Project

Dual Phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

Dual Phase TPC

Figures: XENON100

The WIMP Parameter Space

State-of-the-Art

spin-independent WIMP-nucleon interactions

some results are missing...

XENON1T @ LNGS

XENON1T @ LNGS

PMTs: Hamamatsu R11410-21

JINST 8, P04026 (2013) EPJ C 75, 546 (2015)

Low-background PMT developed with Hamamatsu

Extensive pre-testing/characterization campaign

PMTs: Hamamatsu R11410-21

M. Schumann (Freiburg) – Direc

TPC Data Acquisition, Electronics

Parallel, trigger-less readout: \rightarrow low threshold \rightarrow high throughput (>300 MB/s achieved \rightarrow 0.8 TB/d):

raw data \rightarrow database \rightarrow software trigger \rightarrow file

XENON1T

XENON1T Performance

Water shield filled since Summer...

M. Schumann (Freiburg) – Direct Dark Matter Detection

atter Proiect

XENON1T Performance

Water shield continuously filled since Summer...

Cerenkov detector sees muons...

M. Schumann (Freiburg) – Direct Dark Matter Detection

atter Proiect

XENON1T Performance

Recording light (S1) and light signals (S2) from the entire detector

Calibration: external (137Cs, AmBe), internal (83mKr, 220Rn)

Backgrounds

- material background low, self-shielding effective
- ²²²Rn background agrees with predictions
- online removal of ⁸⁵Kr via cryogenic distillation started

M. Schumann (Freiburg) – Direct Dark Matter Detection

Dark Matter Project

Background: Electronic Recoils

Background: Electronic Recoils

different boiling points of Xe and Kr \rightarrow removal of Kr by cryogenic distillation

- → achieved reduction factor ~5×10⁵
- → exceeds the design goal of 10⁴!

column has already delivered a concentration of <0.026 ppt = 2.6×10^{-14} \rightarrow better than required for XENON1T

Electronic Recoil Energy [keV]

Assumed contamination: ²²²Rn: 10 μBq/kg ^{nat}Kr: 0.2 ppt ¹³⁶Xe: 8.9% natural abundance

M. Schumann (Freiburg) - Direct Dark Matter Detection

Fiducial Mass [kg]

Background: Nuclear Recoils

XENON1T Sensitivity

based on background predictions shown before, 2 t \times y exposure:

confirmed by measurement!

XENON1T → XENONNT JCAP 04, 027 (2016)

XENON1T

- 2t active LXe target
- operating
- science run started

XENONnT

- 6t active target
- projected to start in 2018

XENONnT: Sensitivity vs. time

LZ information taken from: https://idm2016.shef.ac.uk/indico/event/0/contribution/69/material/slides/0.pdf

XENON Science Goals

Dark Matter Searches: The Limit

DARWIN The ultimate WIMP Detector

spin-independent WIMP-nucleon interactions

some projects are missing...

DARWIN The ultimate WIMP Detector

DARWIN Backgrounds

high-E neutrinos

NR signature

→ CNNS bg

Xe-intrinsic bg²²²Rn, ⁸⁵Kr, 2νββ

neutrons from

 (α,n) and sf

pp+⁷Be neutrinos → ER signature Remaining background sources: – Neutrinos (\rightarrow ERs and NRs) – Detector materials (\rightarrow n) – Xe-intrinsic isotopes (\rightarrow e⁻) (assume 100% effective shield (~15m) against µ-induced background)

JCAP 10, 016 (2015)

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

DARWIN WIMP Sensitivity

JCAP 10, 016 (2015)

- exposure: 200 t \times y; all backgrounds included
- likelihood analysis
- 99.98% ER rejection @ 30% NR acceptance, S1+S2 combined energy scale, LY=8 PE/keV, 5-35 keVnr energy window

WIMP Detection

WIMP Spectroscopy

Reconstruction: 2×10⁻⁴⁷ cm² 10-44 200 t×y 10-45 Cross Section [cm²] 10-47 10 10^{-49} 10^{2} 10^{3} 10 WIMP mass [GeV/c2]

Capability to reconstruct WIMP parameters

- m_v=20, 100, 500 GeV/c²
- $1\sigma/2\sigma$ CI, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses >500 GeV/c²

R&D Objective: Solve some of the most critical challenges for the *ultimate* dark matter detector.

5

 \rightarrow backgrounds (²²²Rn, (α ,n) neutrons), detector size

DARWIN The ultimate WIMP Detector

Interactions in LXe Detectors

Many **science channels** are accessible with a multi-ton DARWIN detector thanks to its extremly low ER background.

Solar Axions, Dark Matter ALPs

JCAP 11, 017 (2016)

Axions and ALPs couple to xenon via **axio-electric-effect**

$$\sigma_{Ae}(E_A) = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A} \frac{3E_A^2}{16\pi \,\alpha \,m_e^2} \left(1 - \frac{\beta_A}{3}\right)$$

 \rightarrow axion ionizes a Xe atom

Axion

arises naturally in the Peccei-Quinn solution of the strong CP-problem → well-motivated dark matter candidate

Axion-like particle (ALP) generalization of the axion concept, but without addressing strong CP problem (ALPs = Nambu-Goldstone bosons from breaking of some global symmetry)

Low-E solar Neutrinos

Low-energy solar Neutrinos: pp, ⁷Be

- → vast majority of solar neutrinos; help to understand how the Sun works
- \rightarrow very low energetic, hard to detect
- → mainly pp-neutrinos

pp-Neutrinos in DARWIN

a background for the WIMP search

JCAP 11, 017 (2016)

- neutrinos interact with Xe electrons
 → electronic recoil signature
- continuous recoil spectrum
 - \rightarrow largest rate at low E

Neutrino interactions

• ER rejection efficiencies ~99.98% at 30% NR efficiency are required to reduce to sub-dominant level

pp-Neutrinos in DARWIN

a new physics channel!

DARWIN

JCAP 11, 017 (2016)

- neutrinos interact with Xe electrons
 → electronic recoil signature
- continuous recoil spectrum
 - \rightarrow largest rate at low E

~0.26 v evts/t/d in low-E region (2-30 keV)

Neutrino interactions

- 30t target mass, 2-30 keV window
 - → 2850 neutrinos per year (89% pp)
 - → achieve 1% statistical precision on pp-flux (\rightarrow Pee) with 100 t x y

¹³⁶Xe: 0v double-beta Decay

JCAP 01, 044 (2014)

0v Double-beta Decay

Supernova Neutrinos

Chakraborty et al., PRD 89, 013011 (2014) Lang et al., PRD 94, 103009 (2016)

- $\bullet\,\nu$ from supernovae could be detected via CNNS as well
- signal fom accretion phase of a ~18 Msun supernova
 @ 10 kpc is visible in a 10t-LXe detector (=DARWIN)
- signal: NRs plus precise time information
- challenge: theshold

Exciting times ahead of us

