Exploring the Dark Universe Marc Schumann University of Freiburg Physics Colloquium Freiburg, 12.06.2017 www.app.uni-freiburg.de

The second second second second

95% of the Universe is dark!

Dark Energy????

about 100'00 dark matter particles cross an area of 1 cm² per second

Part 1 – Evidence for Dark Matter

Galactic Rotation Curves

Measurement: flat rotation profile ... well beyond visible stars

"Halo" made from Dark Matter (isothermal sphere, $\rho \sim 1/r^2$)

Cosmic Microwave Background

= afterglow of the hot big bang; variations at $\Delta T/T \sim 10^{-5}$ level

Dark Matter shapes the Universe

~40M years after big bang

http://cosmicweb.uchicago.edu

Dark Matter shapes the Universe

now

Simulation

Observation (SDSS)

WANTED for moving the universe DARK MATTER

Looking for matter with the following properties:

- "invisible"
- "cold" (= "slow")
- almost collisionless
- stable

REWARD: NOBLE PRICE?

<u>Problem</u>: no known particle fits the description → we need to look for something new weakly interacting massive particle (WIMP)

Primordial Black Holes?

Can primordial black holes (PBH) formed in the big bang be the dark matter?

constraints in 10-100 Msun range (LIGO):

- PBHs cannot constitute >0.01% of dark matter

but: new discussion about PBH dark matter started maybe PBH not dark matter but faster merger rate Astrophys.J. 680, 829 (2008) PRL 116, 201301 (2016) PRL 117, 061101 (2016)

Dark Matter: (indirect) Evidence

WMAP

Particle Dark Matter Candidates: – WIMP → "WIMP miracle"

- Axion
- SuperWIMPs
- sterile neutrinos
- WIMPless dark matter
 - Gravitino

Part 2 – Searching for Dark Matter

Dark Matter Search

Indirect Detection Production @Collider

f

Cygnus Arm Direct WIMP Search

Carina-Sagittarius Arm

Elastic Scattering of WIMPs off target nuclei

How much dark matter is here? canonical value: ~0.3 GeV/cm³

V ~ 230 km/s

Perseus Arm

<- Our Solar System

20000

30 000

40000

· Local or Orion Arm

Direct WIMP Search

→ electronic recoil [in keVee]

Direct WIMP Search

M. Schumann (Freiburg) - Exploring the Dark Universe

Cosmic rays (p, n, µ) enter any shielding or induce secondary particles

Laboratori Nazionali JGS del Gran Sasso

LNGS: 1.4km rock (3700 mwe)

Background Sources

muons

neutrons from (α,n) and sf natural γ-bg natural γ-bg natural γ-bg (α,n) and sf (α,n) and sf

Electronic Recoils (gamma, beta) Nuclear Recoils (neutron, WIMPs)

The U and Th Chains

Low-background Screening

10-

500

- y-spectrometry using HPGe Detectors
- mass spectroscopy: ICP-MS, GDMS
- neutron activation analysis
- ²²²Rn emanation

Energy (keV)

3000

2500

1500

1000

2000

Background Suppression

Avoid Backgrounds

Shielding

deep underground location large shield (Pb, water, PE) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

Use of radiopure materials

Use knowledge about expected WIMP signal

WIMPs interact only once

→ single scatter selection requires some position resolution

WIMPs interact with target nuclei

→ nuclear recoils exploit different dE/dx from signal and background

Part 3-The XENON1T Experiment

A AND A DOWN, AND A AND A AND A

T

C WINN CO

Cost Canton Language

Anna

A seal and a seal of the

In

=

Dual Phase liquid xenon TPC

Dual Phase TPC

Dual Phase TPC

Figures from XENON100

The WIMP Parameter Space

spin-independent WIMP-nucleon interactions

High WIMP-masses TPC dominated

→ ≥4.5 GeV/c²

spin-independent WIMP-nucleon interactions

some projects are missing...

largest LXe TPC ever built cylinder: 96 cm active LXe target: 2.0t (3.2t total) 248 PMTs

Parallel, trigger-less readout: \rightarrow low threshold \rightarrow high throughput (>300 MB/s achieved \rightarrow 0.8 TB/d):

How would dark matter look?

Dark Matter Project

22

20

18

16

12

... but it's a low-E neutron interaction from calibration!

Blinded Data

XENON1T: **35.6** $t \times d$

Background Expectation

figure of merit: exposure E = target mass [t] \times measuring time [d]

XENON1T: **35.6** $t \times d$

note:

final **unbinned profile likelihood** analysis takes into account

- full signal and background distributions
- full parameter space

Unblinding...

figure of merit: exposure *E* = target mass [t] × measuring time [d]

XENON1T: **35.6** $\mathbf{t} \times \mathbf{d}$

no dark matter candidate observed!

An ultra-low background

exposure E = target mass [t] \times measuring time [d]

No Signal → Exclusion Limit

spin-independent WIMP-nucleon interactions

XENON1T science goal: $5 \times$ more sensitive than current result

XENON1T → XENONNT JCAP 04, 027 (2016)

XENON1T

- 2t active LXe target
- taking data

XENONnT

- 6t active target
- science run by 2019

Dark Matter Searches: The Limit

spin-independent WIMP-nucleon interactions

some projects are missing...

Dark Matter Searches: The Limit

DARWIN The ultimate WIMP Detector

spin-independent WIMP-nucleon interactions

some projects are missing...

DARWIN The ultimate WIMP Detector

JCAP 11, 017 (2016)

spin-independent WIMP-nucleon interactions

DARWIN The ultimate WIMP Detector

JCAP 11, 017 (2016)

Towards the ULTIMATE detector erc

WIMP Detection

WIMP Spectroscopy

Exploring the dark with LXe Detectors

